УДК 550.34(575.2)

Муралиев А.М., Абдыраева Б.С., Малдыбаева М.Б.

Институт сейсмологии НАН КР, г. Бишкек, Кыргызстан

МЕХАНИЗМЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ КЫРГЫЗСТАНА ЗА 2009 ГОД

Аннотация: В статье представлены результаты анализа механизмов очагов землетрясений с энергетическим классом $K_R \ge 10.0$, произошедших на территории Кыргызстана и прилегающих к ней районов в 2009 году. Проведена оценка точности, надёжности и представительности этих данных.

Ключевые слова: механизм очага, эпицентр, коровые землетрясение, нодальная плоскость, Бишкекский прогностический полигон, Южный Тянь-Шань, оси главных напряжений, землетрясение.

2009-ЖЫЛДАГЫ КЫРГЫЗСТАНДАГЫ ЖЕР ТИТИРӨӨЛӨРДҮН ОЧОКТОРУНУН МЕХАНИЗМДЕРИ

Кыскача мазмуну: Макалада 2009-ж. Кыргызстандын аймагында жана ага жакын жайгашкан райондордо болуп өткөн энергетикалык классы $K_R \ge 10.0$ болгон жер титирөөлөрдүн очугунун механизмдеринин талдоого алынышынын жыйынтыктары берилген. Ушул маалыматтардын тактыгына, ишенимдүүлүгүнө жана көрсөткүчтүүлүгүнө баа берилген.

Негизги сөздөр: очок механизми, эпиборбор, кабык жер титирөөлөрү, нодалдык тегиздик, Бишкек божомолдоочу полигон, Түштүк Тянь-Шань, башкы чыңалуулардын октору, жер титирөө.

FOCAL PLANE SOLUTIONS FOR EARTQUAKES, OCCURRED ON THE TERRITORY OF KYRGYZSTAN IN 2009

Abstract: The article presents some results of the analysis of focal mechanisms of earthquakes with energy class $KR \ge 10.0$, occurred on the territory of Kyrgyzstan and its surrounding areas in 2009. Estimation of the accuracy, reliability and representativeness of the data was conducted here.

Keywords: focal mechanism, epicenter, crustal earthquake, nodal plane, Bishkek Prognostic Test Site, Southern Tien Shan, principal stress axes, earthquake.

1. Введение

Представление об очаге корового землетрясения можно трактовать как разрыв сплошности материала Земли, возникающий под действием накопленных сдвиговых напряжений. Накопление напряжений происходит в процессе тектонической деформации. Разрыв может быть в пространстве «устойчивым» и «неустойчивым», в зависимости от распределения внешнего напряжения. Устойчивый разрыв, для увеличения размера, требует рост внешних напряжений. Неустойчивый достаточно быстро распространяется при фиксированном уровне напряжений, так как величина нагрузки быстро падает с ростом размера разрыва. Таким образом, не всякий разрыв является очагом землетрясения, а только тот, размеры которого увеличиваются в процессе вспарывания. Практика изучения очагов коровых землетрясений показывает, что разрыв возникает в малой области и распространяется в геофизической среде со скоростью, не превышающей скорость распространения поперечных волн в геофизической среде. Наблюдается также образование нескольких разрывов при одном землетрясении (сложный очаг).

Японскими сейсмологами впервые было предложено описание закономерного распределения знаков первых вступлений сейсмических волн на сейсмических станциях, расположенных в различных направлениях от очаговой зоны и тогда в сейсмологии впервые было введено понятие нодальных плоскостей [Накано. 1923].[1] Первое вступление – смещение записи на сейсмограмме во время прихода объёмной и продольной Р-волн. Смещение вверх соответствует сжатию в очаге; смещение вниз – растяжению. Нодальные плоскости – поверхности нулевых смещений. Квадратное распределение знаков первых вступлений Р-волн наблюдается в большинстве землетрясений и свидетельствует о том, что землетрясения взрывного типа редки и разрядка энергии сопровождается уменьшением, главным образом, сдвиговых напряжений. Наиболее общепринятой моделью механизма очага землетрясения является модель двойного диполя – двойная пара сил без момента, которая была предложена А.В.Введенской [2]. Модель двойного диполя имеет две пары сил, каждая пара содержит силы, равные по величине и противоположные по направлению. Сумма общей силы равна нулю.

В настоящее время практически во всех сейсмоактивных регионах мира проводятся определения механизмов очагов землетрясений [3]. Чтобы воспользоваться моделью двойного диполя, необходимо установить, каким образом характеристики сейсмического излучения связаны с параметрами очага. Это является предметом обратной задачи сейсмологии. Прямая задача, напротив, по процессам в очаге определяет сейсмическое излучение. Решение обратной задачи некоторые исследователи считают некорректным [4,5].

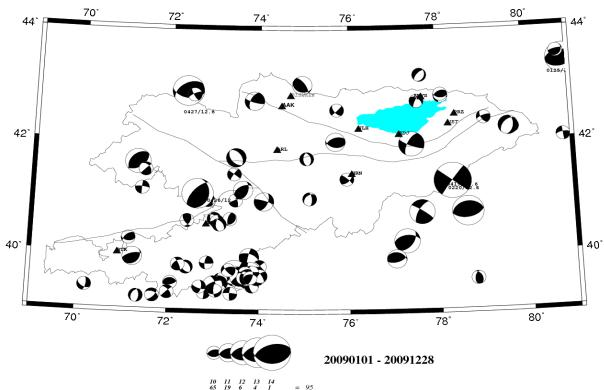
Определение механизма очага землетрясения означает, по существу, что по данным инструментальных сейсмических наблюдений необходимо найти: 1) положения в пространстве двух ортогональных нодальных плоскостей, квадратно разделяющих область сжатия от области растяжения; 2) направления вектора смещения и 3) ориентации осей главных напряжений сжатия и растяжения в очаге. Нодальные плоскости (NP1 и NP2) характеризуют три угловых параметра - простирание, падение и скольжение (strikeo, dipo, slipo); оси напряжения сжатия (P) и растяжения (T) – азимут (от севера по часовой стрелки до точки выхода осей) Агто, и угол между этими осями и горизонталью (plungeo). Угловые параметры дают нам информацию, при каком напряжённом состоянии земной коры произошло рассматриваемое землетрясение. Векторы главных напряжений в очаге, отражают действие глубинных тектонических сил в районе очага землетрясения.

Исследование механизма очага (MO) землетрясения является одним из важнейших направлений в современной сейсмологии. Результаты анализа MO сейсмических событий различного энергетического уровня можно использовать для решения задач сейсмогеодинамики и прогноза сейсмической опасности территории.

Основной целью предлагаемой статьи является демонстрация результатов изучения механизма очагов землетрясений Тянь-Шаня. Массовая обработка проведена на базе компьютерной программы «Sourcemechanism», которая была разработана японским сейсмологом D.Suetsugu [6]. Для каждого события найдено решение механизма очага и уточнено путем сопоставления подобного решения из других каталогов международных сейсмологических центров [СМТ, ISC и др.]. При этом основное внимание уделено трём факторам: точности, надёжности и представительности данных наблюдений.

<u>Класс точности А</u>. При определении параметров механизма очагов использовались данные до 15 сейсмических станций. Нодальные линии P-волн и оси главных напряжений в очаге проведены с точностью $\pm 5^0$. В этом случае механизм очага землетрясение имеет единственное решение.

<u>Класс точности В</u>. Механизм очага землетрясения определяется по данным до 10-12 станций. При максимальном количестве знаков первых вступлений число несогласующихся не превышает 5. Нодальные линии P-волн и оси главных напряжений в очаге проведены с точностью ± 10 - 15^0 .


<u>Класс точности С.</u> Обработка механизма очага в большинстве случаев проведена на основе данных 8 станций. Нодальные линии P-волн и оси главных напряжений в очаге проведены с точностью ± 20 -25 0 [7].

2. Исходные данные и методика определения

В качестве исходных данных использованы знаки чётких первых вступлений Р-волн, которые сняты, в основном, с сейсмограмм региональной сети сейсмических станций Кыргызстана, Казахстана, Узбекистана и, в некоторых случаях, из сейсмологического бюллетеня. Сеть сейсмических станций региона (Кыргызстана, Казахстана и Узбекистана) в 2009 г. обеспечила возможность определения МО землетрясений Тянь-Шаня с энергетическим классом $K_R \geq 10$. Цифровые записи станций сети KNET (Бишкекский прогностический полигон), сначала переведены из скорости в смещение, затем сняты знаки Р-волн. Определение МО землетрясений выполнено по методике А.В.Введенской [2]. В нашем случае вся процедура выполнена с помощью компьютерной программы «Sourcemechanism» [6], которая «строит» стереограммы фокального механизма для каждого изучаемого землетрясения.

3. Результаты

Определены механизмы очагов 95 землетрясений с $K_R \ge 10$, произошедших на территории Кыргызстана в 2009 г. Распределение МО исследованных нами землетрясений представлено на рисунке 1.

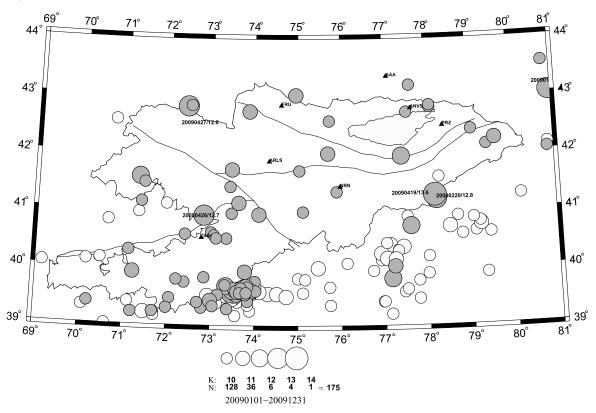


Рисунок 1. Карта-схема механизма очагов землетрясений Кыргызстана с $K \ge 10$ за 2009 год.

Из рисунка 1 видно, что в целом по всей территории в очагах землетрясений преобладают «надвиговые» и «взбросовые» типы подвижек. В Центральном Тянь-Шане встречаются очаги «сбросового» типа, в которых ось главных напряжений сжатия имеет вертикальный характер. Простирание нодальных плоскостей на Северном, Юго-Западном (Алай) и Южном Тянь-Шане (Какшаальская зона) совпадает с простиранием основных

геологических структур (хребтов, разломов). Данные о МО землетрясений Ферганской впадины и её горного обрамления отсутствуют по территории Узбекистана, т.к. в 2009 г. они узбекскими сейсмологами не определялись. Нет также данных о МО и для многих землетрясений Кокшаальской зоны Южного Тянь-Шаня в связи с отсутствием материала с сейсмических станции, расположенных на территории Китая.

Наглядное представление о количестве землетрясений показано на рисунке 2 и в таблице 1.

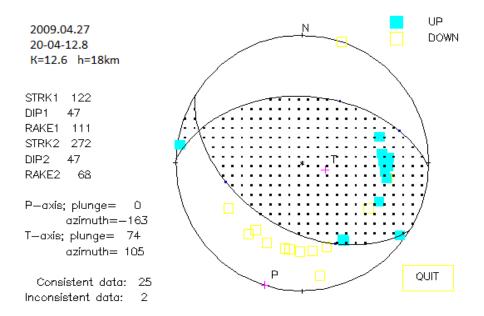


Рисунок 2. Карта-схема распределения эпицентров землетрясений Кыргызстана с $K \ge 10$ за 2009 год. 1- эпицентр, 2- эпицентр, для которого определён механизм очага.

Таблица 1. Распределение общего числа землетрясений (N) по энергетическим классам (K) и числа землетрясений (n), для которых определен механизм очага

K	10	11	12	13	14	Всего
N	128	36	6	4	1	175
n	65	19	6	4	1	95
n/N, %	51%	53%	100%	100%	100%	54%

В качестве примера на рисунке 3 показано решение МО землетрясения 27 апреля 2009 г. В очаге землетрясения произошла подвижка типа «надвиг». Механизм очага этого же землетрясения, определённый в Гарвардском университете США, (решение GCMT) дал тоже «надвиговый» тип подвижки (таблица 2).

Рисунок 3. Стереограмма механизма очага землетрясения 27 апреля 2009 г. с энергетическим классом K_R =12.6 и глубиной гипоцентра h= 18 км в проекции нижней полусферы (наше решение).

В таблице 2 представлены данные о МО сильных землетрясений, произошедших на территории Кыргызстана, в международном формате [8]. Там же приведена точность (в градусах) проведения нодальных линий и осей главных напряжений «сжатия» и «растяжения». Два землетрясения из каталога за 2009 г. имеют двойное решение механизма очага, что связано с недостаточностью данных [8]. Стереограммы механизма очагов ощутимых землетрясений Кыргызстана показаны на рисунке 4.

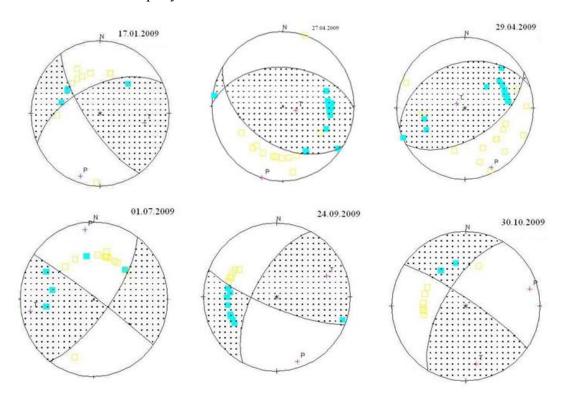


Рисунок 4. Стереограммы механизма очагов ощутимых землетрясений Кыргызстана в 2009 году.

Таблица 2.

Параметры механизмов очагов для сильных землетрясений в 2009 г.

		Коорд	Координаты					Оси	Оси главных напряжений	напряж	ений			Нодал	Нодальные плоскости	оскости			
					Mh			T	N		I	Р		NPI			NP2	1	-
Дата д м	Время ч мин с	e, °k	λ, °Ε	H, KM		×	7d	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	ство
17 01	20.08.15.9	39 55	73 47	٧		116	35	101	53	302	10	198	246	58	19	145	74	147	
17.01	7.00 07	20,00)		0.11	+ 1	+3	+1	±2	±2	±]	∓4	±2	±4	#3	±3	Ŧ	
	000	0000	27	9		, ,	74	105	17	286	0	197	122	47	111	272	47	89	
27.04	20 04 12.8	78,74	75,77	18		0.71	+ 1	±15	±5	±2	8∓	±3	7	7	±2	±1	₹	±3	
	20 04 15.7	42,90	72,35	20	5.0		70	74	20	261	1	168	16	50	117	239	47	62	GMT
	- 0						62	299	9	64	6	155	253	36	101	65	54	82	
767.04	18 55 08.5	41,58	11,55	13		11./	±5	±30	±2	±5	±5	+ 4	±15	+4	±16	±3	±5	±10	
	18 53 11.8	41,62	71,25	20	4.8		84	17	8	288	, w,	139	223	42	82	54	46	26	GMT
		07.00	0000	,			14	260	72	10	10	352	306	87	163	37	73	3	
01.07	00 29 21.1	39,68	13,53	0		17.3	±12	8 ₩	±12	3±8	±12	±7	6∓	±10	±7	9=	7=	±4	
	00 29 26.9	39,67	73,47	19	5.2	2		260	82	114	4	350	305	68	174	35	84	_	GMT
000		11.05		000			27	19	61	271	6	162	112	78	154	208	64	13	
74.09	0/5/11./	41,93	74,11	07		7.71	±5	±5	±5	±5	±2	±20	±3	9∓	9#	±5	±111	±3	
0.00	_	200		Ų		11	2	170	64	324	11	75	211	99	172	304	82	25	
30.10	08 49 44.2	40,/3	70,11	0		0.11	3±5	+8	±3	±2	±5	∓70	±19	±7	±10	9=	₩	±2	

ЗАКЛЮЧЕНИЕ

- 1. Анализ механизмов очагов землетрясений Кыргызстана с $K_R \ge 10.0$ в 2009 году показал, что на территории республики преобладают подвижки «надвигового» и «взбросового» типов.
- 2. Простирание нодальных плоскостей в очагах исследованных землетрясений практически совпадают с простиранием основных геологических структур (хребтов, разломов).
- 3. Направление осей главных напряжений сжатия в очагах исследованных землетрясений ориентировано в близгоризонтальном и близмеридиональном направлениях.
- 4. Механизмы очагов землетрясений определены с точностью класса «А», т.е. в обработке нодальные линии и оси напряжений «сжатия» и «растяжения» проведены через \pm 5°. Общее количество определений МО рассматриваемых нами землетрясений с $K_R \ge 10.0$ составляет более 54%.
- 5. Начиная с этой статьи, мы постоянно будем публиковать информацию о механизмах очагов землетрясений Тянь-Шаня в следующих интернет-журналах «Вестник ИС НАН KP» (www.seismo.kg).

Статья написана при поддержке гранта по проекту МНТЦ # КR-2011.

Литература

- 1. Nakano H. Notes on the nature of the forces which give to the earthquake motions.- Seismol. Bull. Centr. Meteorol. Observ. Japan. 1923. 462pp
- 2. Введенская А.В. Исследование напряжений и разрывов в очагах землетрясений при помощи теории дислокации. М: Наука; 1969-136с.
- 3. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И.
- 4. Поле упругих напряжений Земли и механизм очагов землетрясений. Журнал сейсмология М.:Наука. №8. 1972. 192c.
- 5. Костров Б.В. Механика очага тектонического землетрясения. М.: Наука, 1975. 172с.
- 6. Аки К., Ричардс П. Количественная сейсмология. Теория и методы. М.: Мир, 2 т. 1983. 880с.
- 7. SuetsuguD. SourceMechanism. IISEE, Tsukuba, Japan. 1998. –103pp.
- 8. Муралиев А.М. Сейсмичности и сейсмотектоническая деформация Юго-Западной Киргизии и сопредельных территорий. Фрунзе; «Илим», 1989. 44с.
- 9. Муралиев А.М., Абдыраева Б.С., Малдыбаева М.Б. Каталог механизмов очагов землетрясений в Центральной Азии за 2009г. // Землетрясения Северной Евразии за 2009г. Обнинск; ГС РАН 2009г.
- 10. GlobalCMTcatalog –электронный ресурс http://www.globalcmt.org/CMTsearch.html.