УДК 550.346 (575.2)

МЕХАНИЗМ ОЧАГА ГЛАВНОГО ТОЛЧКА ЗЕМЛЕТРЯСЕНИЯ 22.01.2024 Г. $(M_{PV} = 6.9),$ КИТАЙ (КНР)

Аннотация. В статье представлены решения механизмов очага (МО) сильного землетрясения, произошедшего 22 января 2024 года с магнитудой М_{PV}=6.9 на территории Китайской Народной Республики (КНР), и некоторых его афтершоков. Деформация подвижек в очагах характеризуется сдвиго-надвиговым типом.

Ключевые слова: механизм, эпицентр, землетрясение, основной толчок, фокальный механизм, стереограмма, нодальная плоскость, оси главных напряжений.

2024-ЖЫЛДЫН 22-ЯНВАРЫНДАГЫ ЖЕР ТИТИРӨӨНҮН НЕГИЗГИ СИЛКИНҮҮ МЕХАНИЗМИНИН ОЧОГУ (М_{РV}=6.9), КЫТАЙ (КЭР)

Кыскача мазмуну. Макалада 2024-жылдын 22-январында Кытай Эл Республикасынын аймагында болгон магнитудасы М_{РV} =6.9 болгон жер титирөөлөрдүн очоктук механизминин (ОМ) натыйжалары берилген. Очоктогу кыймылдардын деформациясы жылышуу-козголуу түрү менен мүнөздөлөт.

Негизги сөздөр: механизм, эпицентр, жер титирөө, негизги силкинүү, фокалдык механизм, стереограмма, нодалдык тегиздик, башкы чыңалуу октору

THE FOCAL MECHANISM OF THE MAIN SHOCK OF THE EARTHQUAKE ON JANUARY 22, 2024 (M_{PV}=6.9), CHINA

Abstract. The article presents the results of the focal mechanisms (FM) of the strong earthquake that occurred on January 22, 2024 with a magnitude M_{PV} =6.9 in the territory of the People's Republic of China, and some aftershocks. The deformation of motions in the sources is characterized by a strike-slip type.

Keywords: mechanism, epicenter, earthquake, main shock, focal mechanism, stereogram, nodal plane, principal stress axes.

Исходные данные и методика определения

Изучение механизмов очагов необходимо для характеристики напряжённодеформированного состояния очаговой зоны сильных землетрясений. Эта работа трудоёмка и имеет специфический характер, связанный с наличием особенностей волновой картины землетрясений. Достоверность определения кинематических и динамических параметров очагов землетрясений, прежде всего, зависит от системы наблюдений в ближней и дальней зоне. При определении механизма очага (МО) землетрясений необходимо использовать достаточное количество данных от сейсмических станций не только Кыргызстана, но и сейсмических станций соответствующих соседних государств (Казахстан и Китай) [1]. В статье рассматриваются вопросы, связанные с характером подвижек механизма очага основного толчка землетрясения 22.01.2024 г. с магнитудой Мрv=6.9. В таблице 1 представлены параметры исследуемого землетрясения. Таблица 1. Основные параметры землетрясения 22.01.2024 г. с магнитудой М_{PV}=6.9 (данные ЦД ИС НАН КР).

Сейсмические	t _o , час,	arphi ,	λ,	h,	Mpv,	Kr,
службы	мин., сек.	широта	долгота	КМ	магнитуда	класс
ИС НАН КР	18:09:04.3	41º16′	78º34′	16	6.9	15.5

В качестве исходных данных были использованы знаки первых вступлений Р-волн, замеренные по записям цифровых станций сетей KRNET (ИС НАН КР) и KNET (НС РАН), а также данных станций Республики Казахстана и КНР. Всего при анализе были использованы данные 39 станций, а именно 29 станций, установленных на территории Кыргызстана, 9 станций Казахстана и 1 станции Китая (таблица 2).

Таблица 2. Знаки первых вступлений Р-волн по данным региональных станций (цифровые данные).

Чис.мес.год. время в	AAK	ARK	ARLS	ARSB	BOOM	BTK	CHMS	DRK	EKS2	FRU1	JNKS	KBK	KDJ
04аге 22.01.2024г 18-09-04.31	-ip	+ep	+ip	+ep	-ip	+ep	-ip	+ip	+ip	+ip	+ip	+ep	-ip

Продолжение таблицы 2.

KRVK	KU21	KU22	KU23	MNAS	NRN	OHH	PDGK	PRZ	SALK	SFK	SHLS	TARG
-ep	-ip	+ip	-ep	+ep	+ip	+ep	-ip	-ip	+ip	+ep	-ip	-ip
TRKS	TLG	TKM2	ULHL	USP	KAPS	KURS	MDOK	MRKS	AAA	BRLS	SATY	WUS
-ep	-ip	-ip	-ep	-ip	+ip	-ip	+ip	+ip	-ip	+ip	-ip	-ep

Определение МО землетрясений выполнено по методике А.В. Введенской [2]. С помощью компьютерной программы «Source mechanism» [3] построена стереограмма фокального механизма для данного землетрясения, а также некоторых его афтершоков.

Результаты

Сильное землетрясение с Мру=6.9 произошло 22 января 2024 г. в 18^h09^m на территории КНР, в 75 км к юго-востоку от Кумтор, в 137 км к юго-востоку г. Каракол, в 150 км юго-востоку от пгт. Каджи-Сай, в 218 км к юго-востоку от г. Нарын, в 370 км к юго-востоку от г. Бишкек (координаты $\varphi = 41^{\circ}16'$ N, $\lambda = 78^{\circ}34'$ E). В населённых пунктах Кыргызской Республики интенсивность землетрясения составила: Кумтор - 6 баллов, пгт. Каджи-Сай, Джети-огузский район - 4.5 балла, Тонский район - 4.5 балла, Ак-Суйский, Тюпский, Иссык-Кульский районы, г. Нарын, г. Бишкек, г. Балыкчы- 4 балла (данные ЦД ИС НАН КР). Для этого землетрясения имеется 4 решения механизма очага (таблица 3), рассчитанные по методу А.В. Введенской [2] – ИС НАН КР (рисунок 1), по методу тензора момента центроида в Колумбийском центре США (GCMT) [4], по методу тензора момента в IPGP- Institute for Petroleum Research and Geophysics [5] и AUST-Geoscience Australia [6], которые близки по своей сути (рисунок 2). Стереограмма механизма очага землетрясения 22.01.2024 г., построенная по данным знаков первых вступлений Р-волн, замеренных по записям 39 сейсмических станций региона (Кыргызстан, Казахстан и КНР) на расстояниях ∆=69-669 км в широком азимутальном окружении, представлена на рисунке 1. В большинстве случаев знаки первых вступлений Р-волн чёткие. Ось напряжения-сжатия в очаге имеет северо-западное направление. Азимут 318°, угол падения 0°. Ось напряжения-растяжения направлена на юго-запад.

Азимут 228°, угол падения 64°. Ось промежуточного напряжения ориентирована на северо-восток. Азимут 47°, угол падения 25°. Азимут простирания первой нодальной плоскости STK=251°, угол падения составляет DP=51°, угол скольжения SLIP=124°. Азимут простирания второй нодальной плоскости STK=25°, угол падения DP=50°, угол скольжения SLIP=56°. Результаты решения представлены в таблице 3. На стереографической проекции нижней полусферы знаки сжатия и растяжения разделились нодальными плоскостями по программе «Source mechanism» [3]. Подвижка в очаге землетрясения - «сдвиго-надвиг» (рисунок 1). Данные по GCMT – «сдвиго-надвиг» [4] (рисунок 2), IPGP – «сдвиго-надвиг» [5] и AUST – «взброс» [6] (рисунок 2). Сейсмический толчок произошёл в горизонтальном направлении.

Рисунок 1. Стереограмма механизма очага землетрясения 22 января 2024 года с глубиной гипоцентра h=16 км, магнитудой M_{PV}=6.9 в проекции нижней полусферы, полученная по программе «Source mechanism» [2]. Условные обозначения: Р-ось напряжения -сжатия, Т-ось напряжения - растяжения.

Рисунок 2. Стереограмма механизма очага землетрясения 22 января 2024 г., энергетический класс K_R =15.5, время в очаге t_0 =18^h09^m04.3^s, координаты ϕ =41^o16'; λ =78^o34': а) данные GCMT [4]; б) IPGP [5]; в) AUST [6].

					Oc	си гла	вны	х напр	эжке	ний	Нодальные плоскости					ГИ
Агентство	to	h,	M_{pv}	K _R		Т		Ν		Р		NP1			NP2	
	ч мин	kт			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
ИС НАН	18-09	12	6.8	15.5	64	228	25	47	0	318	251	51	124	25	50	56
КР																
GCMT	18-09	14		15.5	59	76	29	269	5	175	236	48	47	110	57	127
IPGP	18-09	22		15.5	61	77	30	258	1	170	105	53	127	234	50	51
AUST	18-09	15		15.5	36	54	12	288	33	189	110	79	103	240	17	41

Таблица 3. Параметры механизма очага землетрясения, произошедшего 22 января 2024 г., по данным четырёх агентств (Source mechanism, GCMT, IPGP и AUST).

Афтершоки. Для изучения Китайского землетрясения была произведена выборка из каталога землетрясений Кыргызстана (ИС НАН КР). Землетрясение сопровождалось многочисленными афтершоками, зарегистрированными сейсмическими станциями Кыргызстана (серия афтершоков прослеживается и в настоящее время). Суммарное число афтершоков на 29.02.2024 г. составило Naфт=2882, энергетический диапазон K_R=4.2 - 13.4. Очаги этих землетрясений расположены в земной коре на глубинах от 10 до 35 км. В качестве примера, в таблице 5 приводится решение механизма очага афтершока с $K_R = 13.1$, полученное по программе «Source mechanism» (рисунок 3). В таблице 4 дано распределение количества афтершоков по энергетическим классам. На рисунке 4 показана карта эпицентров землетрясений основного толка K_R=15.5 и афтершоков с K_R =6.6 - 13.1 с 22.01.2024 г. по 25.01.2024 г. Построенная по данным таблицы 5 стереограмма механизма очага афтершока (рисунок 3) относительно главного толчка приводит к интересным выводам. В частности, система напряжений в очаге максимального афтершока изменилась относительно таковой в очаге главного толчка, меньшей степени для сжатия (напряжения сжатия оказались более горизонтальны – для афтершока стало PL_P=82, а было для главного толчка PL_P=0) и в большой степени – для растяжения (наклон к горизонту этой оси возрос с 1 до 64). Это изменило тип подвижки с чистого сдвига-надвига на чистый надвиг. При этом одна из нодальных плоскостей, которая ориентирована на юго-западное направление, почти не претерпела изменений – для главного толчка STK_{глт}=251, для афтершока STK_{афт}=280, хотя она стала менее крутой -DP уменьшилась с 51 до 45. Другая плоскость для главного толчка была северовосточный (STK_{глт}=25) и не крутой (DP_{глт}=50), для максимального афтершока стала почти северо-восточной (STK_{афт}=85) и крутой (DP_{афт}=79).

Таблица 4. Распределение афтершоков землетрясения 22.01.2024 г., произошедших с 22.01.2024 г. по 29.02.2024 г. по энергетическим классам.

K _R ,	4	5	6	7	8	9	10	11	12	13	Итого
класс											
N/эп	4	377	1045	729	351	202	95	52	16	11	2882

Рисунок 3. Стереограмма механизма очага землетрясения афтершока 22 января 2024 года с глубиной гипоцентра h=20 км, магнитудой M_{PV}=5.7 в проекции нижней полусферы по программе «Source mechanism» [3]. Условные обозначения: Р-ось напряжения- сжатия, Т- ось напряжения -растяжения.

таолица 5. Парамстры меланизма очага афтершока, произошедшего 22 января 2024.	Таблиц	(a 5.	П	араметр	ы	механизма	очага а	рте	ршока,	прои	зоше	цшегс	22	январ	оя 202	24 г
---	--------	-------	---	---------	---	-----------	---------	-----	--------	------	------	-------	----	-------	--------	------

Ī						00	си гла	вны	х напр	эже	ний	Нодальные плоскости					
		to	h,	MP_{pv}	K _R		Т		N		Р		NP1			NP2	2
	Агентство	ч мин	kт			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
Ī	ИС НАН	18-42	20	5.7	13.1	82	277	7	91	1	183	280	45	101	85	46	79
	КР																

На основе анализа фактического сейсмологического материала, построена карта пространственно-временного распределения эпицентров сильных землетрясений и распределения ориентации осей главных напряжений сжатия в очагах исследованных землетрясений (рисунок 4). В пределах РОЗ, в процессе подготовки сильного землетрясения, устойчивость направления осей напряжения сжатия в очагах слабых толчков нарушается. На территории Кыргызстана и прилегающих районов выделены 21 РОЗ [7]. Эпицентры сильных ($K_R \ge 13.0$) землетрясений, образуя цепочки эпицентров, распределены в пяти зонах (I-V): Северо Тянь-Шаньская (I), Чаткало-Южно-Иссык-Кульская(II), Приферганская (III), Какшаальская (IV) и группа эпицентров 13-16 энергетических классов землетрясений в Центральном Тянь-Шане (V). Общая сейсмологическая и геолого-геофизическая характеристика указанных зон приведена в работе [8]. Землетрясение Учтурфан (22.01.2024 г., время в очаге to=18^h09^m) относится в Кокшаальской сейсмоактивной зоне (IV), сейсмической бреши 1-го рода и их расположение по исследуемой территории следует принимать как районы ожидаемых сильных землетрясений РОЗ-15 (рисунок 4).

Рисунок 4. Карта эпицентров землетрясений основного толка с $K_R = 15.5$ и афтершоков с $K_R = 6.6-13.1$, произошедших с 22.01.2024 г. по 25.01.2024 г. Условные обозначения: 1очаги землетрясений; 2 -механизм очага основного толчка $K_R = 15.5$; 3-механизм очага афтершока с $K_R = 13.1$.

Заключение. Исследуемое землетрясение с энергетических классов K_R =15.5 (22 января 2024 года, Китай) произошло в результате воздействия тектонических сил, действующих в земной коре в горизонтальном сжатии и близвертикальном растяжении на территории Китая. После основного толчка в настоящее время фиксируется ряд сильных и слабых афтершоков. Очаг землетрясения приурочен к разлому, расположенному в Северо-Кокшаальской зоне. Изучение механизмов очагов основного толчка и некоторых афтершоков позволило сделать вывод, что в очаге основного толчка и произошла подвижка «сдвиго-надвигового» типа (таблица 3), а в очаге приведённого афтершока – «надвиг» (таблица 5). Результат решения фокального механизма очага землетрясения (22.01.2024 г.) в ИС НАН КР достаточно хорошо согласуется с результатами определения МОЗ другими методами, полученными в международных центрах (GCMT, IPGP, AUST) (рисунок 2 и таблица 3).

ЛИТЕРАТУРА

- 1. Муралиев А.М., Малдыбаева М.Б., Абдыраева Б.С. Механизмы очагов землетрясений Кыргызстана и прилегающих территории за 2014 год. Вестник Института сейсмологии НАН КР. 2019.- №2(14).- С.68-76.
- **2.** Введенская А.В. Исследование напряжений и разрывов в очагах землетрясений при помощи теории дислокации. М.: Наука. 1960.-136 с.
- Suetsugu D. Source Mechanism. IISEE Lecture note Global Course, Tsukuba, Japan. 1998. 103 pp.
- 4. The Global CMT Project, Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA; <u>https://www.globalcmt.org/CMTsearch.html</u>.

- 5. <u>http://www.isc.ac.uk/iscbulletin/search/fmechanisms/</u>IPGP- Institute for Petroleum Research and Geophysics.
- 6. <u>http://www.isc.ac.uk/iscbulletin/search/fmechanisms/</u> AUST- Geoscience Australia.
- 7. Муралиев А.М., Малдыбаева М.Б., Абдыраева Б.С. и др. «Оценка сейсмической опасности территории Баткенской области Кыргызской Республики». Отчёт лаб. ПЗ. Фонды ИС НАН КР, Бишкек. 2020. С.-42-44.
- 8. Джанузаков К.Дж., Ильясов Б.И., Кнауф В.И. и др. «Сейсмическое районирование Киргизской ССР» Фрунзе: Издательство «Илим», 1977 г.-53.

Рецензент: д. ф.-м.н., Токтосопиев А.М.