УДК 550.34

Вольхина Е.Т.

Институт сейсмологии НАН КР, г. Бишкек, Кыргызстан

К ВОПРОСУ О ВЕЛИЧИНЕ Мру/К_Р ДЛЯ ТЕРРИТОРИИ БАТКЕНСКОЙ ОБЛАСТИ ПО ДАННЫМ НАБЛЮДЕНИЙ ИС НАН КР

Аннотация. Рассмотрены значения величины Mpv/K_R для территории Баткенской области в пределах координат $\varphi = 39.0^{\circ}$ -40.5°N, $\lambda = 69.0^{\circ}$ -74.0°E по данным цифровых наблюдений Института сейсмологии НАН КР за 2011 - 2020 годы. Построены графики распределения значений величины Mpv/K_R по K_R = 7.0 – 12.0.

Ключевые слова: амплитуды Р и S-волн, Mpv/K_R, распределение Mpv/K_R, временные ряды.

КР УИА СИНИН БАЙКООЛОРУ БОЮНЧА БАТКЕН ОБЛАСТЫНЫН АЙМАГЫНДАГЫ Мрv/Кр ЧОҢДУГУ ТУУРАЛУУ МАСЕЛЕГЕ КАРАТА

Кыскача мазмуну. КР УИАнын Сейсмология институтунун 2011-2020-жылдар ичиндеги санариптик байкоо жүргүзүүлөрүнүн маалыматтары боюнча $\varphi=39,0^{\circ}-40,5^{\circ}N$; $\lambda = 69.0^{\circ} - 74.0^{\circ}E$ координаттарынын чектериндеги Баткен областынын аймагы үчүн Мрv/К_Р чоңдугунун маанилери караштырылды. К_Р = 7.0 - 12.0 боюнча Мрv/К_Р чоңдугунун маанилерин бөлүштүрүү графиги түзүлдү.

Негизги сөздөр: Р жана S-толкундарынын амплитудалары, Mpv/K_P, Mpv/K_P бөлүштүрүлүшү, мезгил катарлары.

ON THE QUESTION OF THE VALUE OF Mpv/K_R FOR THE TERRITORY OF THE BATKEN REGION ACCORDING TO THE OBSERVATION'S DATA OF IS NAS KR

Abstract. The Mpv/K_R parameter for the territory of the Batken region was considered within the coordinates $\varphi = 39.0^{\circ} - 40.5^{\circ}$ N, $\lambda = 69.0^{\circ} - 74.0^{\circ}$ E according to data of digital observations of the Institute of Seismology of the National Academy of Sciences of the Kyrgyz Republic for 2011 - 2020. The plots of the distribution of the Mpv/K_R parameter for K_R=7.0 - 12.0 are created.

Keywords: P and S-wave amplitudes, Mpv/K_R, Mpv/K_R distribution, time series.

Введение и постановка задачи

Известно, что при определении магнитуды и класса для конкретного землетрясения фигурирует один и тот же параметр – максимальная амплитуда Р-волны. Тогда, как при вычисления K_R используется сумма максимальных амплитуд Р- и S-волн. Однако для различных землетрясений, при одном и том же значении Ар, значение As может отличаться существенно. Эта неодинаковость связана с разным соотношением амплитуд Р- и S-волн. Действительно, из теоретических работ известно, что соотношение амплитуд Р- и S-волн может изменяться по ряду причин [1, 2 и др.]. Одна из главных причин – это модель источника. Механизм очага взрывного типа теоретически вообще не должен излучать S-волны. Если рассматривать сдвиговую модель очага землетрясения, то такой источник генерирует S-волну тем большей амплитуды, чем с большей скоростью происходит подвижка по плоскости разрыва.

На рисунке 1 показаны известные результаты теоретических расчётов диаграмм излучения продольных и поперечных волн из двух работ. Сверху на рисунке 1а из работы А. Г. Москвиной [1] показаны модели круговой дислокации, распространяющейся с

разной скоростью, а внизу диаграммы излучения P- и S-волн для них. На рисунке видно, что с увеличением скорости распространения дислокации увеличивается амплитуда Sволны относительно амплитуды P-волны. На рисунке 1б [2] диаграммы для P- и S-волн разделены: сверху диаграммы P-волн, внизу – S-волны. Слева (б) показаны диаграммы для распространяющегося разрыва со скоростью вдвое ниже скорости распространения поперечных волн (слева), а справа (б) - со скоростью, приближающейся к скорости распространения поперечной волны, причём здесь диаграмма S-волны показана в масштабе, уменьшенном в 10 раз, чтобы уместить рисунок.

Следовательно, можно полагать, что отношение амплитуд продольных и поперечных волн, которые определяют численные значения величин MPV и K_R будут отражать косвенным образом процессы в очаге. Цель настоящей работы исследовать значения MPV/K_R.

Рисунок 1а. Диаграммы излучения Р- и S-волн из работы [2] для расширяющейся дислокации.

Рисунок 16. Диаграммы излучения Р- и S-волн из работы [2] для распространяющегося разрыва.

Методика исследования

В практике сейсмологических исследований соотношение между величиной магнитуды Мрv и K_R обычно исследуется при составлении однородных каталогов. По территории Центральной Азии известны работы Раутиан Т.Г. [3, 4], Михайловой Н. Н. [5], Мамырова Э.М. [6-9], а также других авторов. *LgE* = 2.15*mpv* + 7.75 для приборов СК (1)

LgE = 25mpv + 6.5для приборов СКМ [4] (2) $K_{\rm R} = 2,13 MPVA + 0.66$ для Северного Тянь-Шаня [5] (3) $K_{\rm R} = 2,38mpv + 0.19$ для Кыргызского Тянь-Шаня за 1955-2010 гг. [6] (4) $K_{\rm R} = 2,38mb + 0.93$ для Кыргызского Тянь-Шаня за 2000-2013 гг. [7] (5) Видно, что коэффициенты в этих корреляционных соотношениях несколько отличаются по данным разных приборов, районов исследования, временных интервалов. А значит величина Mpv/K_R будет несколько различаться по каждому из этих соотношений. Если в общем виде эти корреляционные соотношения представить как линейное уравнение $K_R = aMPV + b$, то тогда получим соотношение:

Mpv/ K_R =
$$\frac{1}{a} - \frac{b}{a}(1/K_{\rm R})$$
 (6)

Из этого соотношения видно, что величина MPV/K_R определяется не только коэффициентами a и b, но и самим энергетическим классом K_R . Отсюда следует, что для каждого энергетического класса эта величина будет несколько иной, а именно, при увеличении энергетического класса землетрясения значение MPV/ K_R будет несколько возрастать. Далее это будет показано на экспериментальном материале.

С другой стороны, исходя из определений MPV и K_R, получим:

$$MPV/K_R = \left(\lg\left(\frac{Ap}{Tp}\right) + C_1 \right) / \left(\lg(As + Ap) + C_2 \right)$$
(7)

В теоретических исследованиях при построении диаграмм излучения амплитуды Р- и S-волн вычисляются по формулам, тогда как на практике построение таких полных диаграмм не удаётся из-за неравномерного азимутального распределения сейсмических станций относительно эпицентра землетрясения. На рисунке 2 приведены примеры диаграмм, построенных по данным измерений сейсмическими станциями. Здесь As/Ap определяется как отношение среднего значения As для данного землетрясения к среднему значению Ap. Исследование величины As/Ap в разных эпицентральных районах на эпицентральных расстояниях до 200 км [10] показало, что As/Ap принимают значения от 0.5 до 30. При этом изменение значений As/Ap с увеличением эпицентрального расстояния не наблюдается. Этот диапазон изменений As/Ap и будет определять разброс значений MPV/K_R.

Рисунок 2. Примеры диаграмм излучения P- и S-волн для землетрясений: a – 22 августа 2015 г., ϕ =42.70, λ =74.82°, K_R =7.7, cp.(As/Ap) = 7.45 и cpAs/cpAp = 2.11; б – 10 июля 2015 г., ϕ =41.05°, λ =74.02°, K_R = 10.9, cp.(As/Ap) = 6.96 и cpAs/cpAp = 5.16; в – 30 марта 2015 г., ϕ =40.13°, λ =71.49°, K_R = 8.9, cp.(As/Ap) = 21.9 и cpAs/cpAp = 0.34.

Используемый материал

Исследование было проведено по юго-западной части территории Республики Кыргызстан в пределах координат ($\phi = 39.0^{\circ} - 40.5^{\circ}$ N, $\lambda = 69.0^{\circ} - 74.0^{\circ}$ E).

Определение Мру было начато в ИС НАН КР в 1993 г. Представительность каталога по величинам K_R и Мру за период времени 1993-2020 гг. отражается на рисунке 3. За этот период в каталоге присутствует 25 775 событий.

a

Район исследования находится в краевой части сети наблюдений, из-за чего нельзя видеть полной диаграммы излучения Р- и S-волн. Это может вносить неточности в вычислении величины Mpv/K_R. Значения K_R и Mpv брались из Каталога землетрясений Института сейсмологии НАН КР без изменений.

Результаты

На рисунке 4 показан график, отображающий значения MPV/K_R за весь период наблюдений по исследуемой территории. Можно видеть, что значения M_{PV}/K_R до 2009 г. заметно отличаются от таковых после 2011 г. В 2009-2010 гг. проводилось переоснащение аналоговых станций цифровой аппаратурой. Поэтому данные за указанные отрезки времени нельзя смешивать, а следует рассматривать их по отдельности.

Рисунок 4. Временной ряд значений Мрv/К_R за 1993-2020 годы.

Кроме того, соотношения между Мрv и K_R отдельно по данным аналоговых и цифровых наблюдений тоже различаются (рисунок 5). При этом соотношение по данным аналоговых станций хорошо согласуется с соотношениями (1-5), приведёнными в

работах Раутиан, Михайловой и Мамырова. И это понятно, потому что их работы были выполнены по данным аналоговых наблюдений.

Полученное нами соотношение по данным цифровых станций имеет вид:

$$K_{\rm R} = 1,88Mpv + 1,84$$
 (R² = 0,91)

Далее будем рассматривать распределение значений Mpv/K_R только по данным цифровой сети, т.е. по данным за 2011-2020 гг. Таких событий оказалось 17 415.

Рисунок 5. Соотношение между МРV и КR по данным аналоговых и цифровых станций.

Были построены графики распределений значений М_{PV}/K_R - общий для всех значений (рисунок 6), и отдельно по каждому энергетическому классу (рисунок 7).

Рисунок 6. График распределения значений Mpv/K_R . Жирной красной линией показано среднеарифметическое значение для Mpv/K_R . Тонкими красными линиями показано среднеквадратичное отклонение.

Параметры этих распределений сведены в таблицу 1. Из таблицы видно, что с увеличением энергетического класса средние значения Mpv/K_R возрастают, а среднеквадратичные отклонения для них соответственно уменьшаются. Этот же вывод следует из соотношения (6). Однако во времени средние значения Mpv/K_R , а также отклонения от них не остаются постоянными (рисунок 8). Есть интервалы, когда разброс величины уменьшается, например, за 2018 год. Есть интервалы, когда значения Mpv/K_R возрастают.

Синими линиями на графиках отмечены времена, когда произошли сильные землетрясения с $K_R = 13.0 - 15.0$. За год до серии этих событий наблюдается медленное колебательное нарастание значений по событиям с $K_R = 7.0$ и $K_R = 11.0$, а для событий с $K_R = 9.0$ они наоборот убывают.

Можно видеть также, что с 2019 г. наблюдается постепенное увеличение значений Mpv/K_R по классам $K_R = 9.0 - 12.0$.

Рассмотрим крайние значения $MPV/K_{R,}$ исходя из приведённых выше рассуждений, следует ожидать, что в очагах землетрясений с пониженными значениями Mpv/K_R выходящими за пределы среднеквадратичного отклонения, подвижка по плоскости разрыва будет распространяться с большей скоростью, чем в очагах событий с повышенными значениями, также выходящими за пределы среднеквадратичного отклонения.

Рисунок 7. Распределения значений Mpv/K_R отдельно по каждому энергетическому классу.

Таблица 1.

	Среднее	Среднекв.	Общее	В пределах	Меньше	Больше
K	значение	отклонен.	кол-во	среднекв.	среднекв.	среднекв.
	Mpv/K _R			отклонен.	отклонен.	отклонен.
7.0	0.384	0.0215	5107	3667 (71.8%)	748	692
8.0	0.400	0.019	1882	1367 (72.6%)	248	267
9.0	0.416	0.015	674	491 (72.8%)	83	100
10.0	0.427	0.012	251	185 (73.7%)	28	38
11.0	0.436	0.012	96	74 (77.1%)	10	12
12.0	0.442	0.0106	35	22 (62.8%)	7	6
13.0	0.439		7	6 (85.7%)	1	-
14.0	0.454		4			

Вестник Института сейсмологии НАН КР

15.0	0.44		2		
Сводная	0.384	0.026	17415		

На рисунке 9 показан пример для землетрясений с $K_R = 10.0$, со значениями Mpv/K_R, выходящими за пределы среднеквадратичного отклонения. На карту вынесены эпицентры этих землетрясений разным цветом. Видно, что эпицентры землетрясений с повышенными и пониженными значениями MPV/K_R пространственно разделены, что эпицентры землетрясений с пониженными значениями (чёрным цветом) пространственно тяготеют к широтному направлению, тогда как выделенные красным– скорее вытянуты в северо-западном направлении. Можно полагать, что в очагах землетрясений, эпицентры которых простираются в широтном направлении, подвижки в очагах происходили с большей скоростью.

Рисунок 8. Временные ряды значений Mpv/K_R по каждому энергетическому классу. Красные линии – осредняющие.

Рисунок 9. Карта эпицентров землетрясений с $K_R = 10.0$ со значениями Mpv/K_R, выходящими за пределы среднеквадратичного отклонения. Красный цвет соответствует повышенным значениям Mpv/K_R, чёрный – пониженным.

Выводы

 Построение временных рядов значений Мрv/К_R показало, что, начиная с 2011 г. уровень их значений понизился в связи с заменой аналоговой аппаратуры на цифровую. Корреляционное соотношение по аналоговой аппаратуре за 1993-2009 гг. имеет вид:

$K_{\rm R} = 2.172 Mpv + 0.495$	$(R^2 = 0.8156)$,
по цифровой сети наблюдения за 2011-2020 гг.:	
$K_R = 1.883Mpv + 1.84$	$(R^2 = 0.9141)$

а

- 2. Построение распределения значений Mpv/K_R отдельно по разным энергетическим классам показало, что с увеличением энергетического класса средние значения Mpv/K_R возрастают, а среднеквадратичные отклонения для них соответственно уменьшаются.
- Значения Мрv/K_R во временных рядах, построенных для каждого энергетического класса, не остаются постоянными. Есть интервалы, когда значения Mpv/K_R возрастают или убывают. Начиная с 2019 г. для всех энергетических классов наблюдается медленный рост значений.
- 4. Пространственное положение эпицентров землетрясений со значениями Mpv/K_R, выходящими за пределы среднеквадратического отклонения, несколько различаются для разных энергетических классов. Наиболее отчетливая картина наблюдается по событиям с K_R =10.0. Эпицентры землетрясений с пониженными значениями простираются в широтном направлении, а с повышенными в северо-западном направлении. Этот факт говорит в пользу того, что на значения Mpv/K_R в какой-то степени влияет характер процессов в очаге землетрясения.

Литература

- 1. Москвина А.Г. Исследование полей смещений упругих волн в зависимости от характера очага землетрясения //Изв. АН СССР, сер. Ф.3. 1969 №9. С. 3-16
- 2. Lay Th., Wallace T.C. Modern global seismology. Academic Press, 1995. 497 p.
- 3. Раутиан Т.Г. Об определении энергии землетрясений на расстояниях до 3000км // Тр. ИФЗ АН СССР. №32(199). С. 72-98.

- 4. Раутиан Т.Г., Халтурин В.И., Закиров М.С., Земцова А.Г., Проскурин А.П., Пустовитенко Б.Г., Пустовитенко А.Н., Синельникова Л.Г., Филина А.Г., Шенгелия И.С. Экспериментальные исследования сейсмической коды. М.: Наука, 1981. 142 с.
- 5. Михайлова Н.Н., Неверова Н.П., Калмыкова Н.А. Энергетические и магнитудные характеристики землетрясений в практике сейсмических наблюдений на Северном Тянь-Шане. //Землетрясения Северной Евразии в 1993 году. М.: НИА-Природа, 1999. С. 60-64
- 6. Мамыров Э.М. Землетрясения Тянь-Шаня: магнитуда, сейсмический момент и энергетический класс. Бишкек: Инсанат, 2012. 25 с.
- 7. Мамыров Э.М. Управляющие параметры соотношений магнитуда-сейсмическая энергия-сейсмический момент коровых землетрясений. Бишкек: Илим, 2014. 96 с.
- 8. Мамыров Э., Абдрахматов К.Е., Берёзина А.В. Корреляционные зависимости энергетического класса от магнитуды по объёмным волнам землетрясений Тянь-Шаня. //Вестник ИС НАН КР, 2014, №1(3). С.86-91
- Джанузаков К.Д. Сопоставление различных магнитудных и энергетических определений величины землетрясений Центральной Азии //Геолого-геофизические исследования в Институте сейсмологии Национальной Академии Наук Кыргызской Республики. Бишкек: Илим, 2006, с. 38-46.
- Антонова Л.В., Аптекман Ф.Ф., Курочкина Р.И., Нерсесов И.Л., Раутиан Т.Г., Халтурин В.И. Основные экспериментальные исследования динамики сейсмических волн. – М.: Наука, 1968. С. 100-126.

Рецензент: к.ф.-м.н. Фролова А.Г.