УДК 550.34

Мамбетсадыкова А., Омуралиев М., Омуралиева А.

Институт сейсмологии НАН КР, г. Бишкек, Кыргызстан

СООТНОШЕНИЕ ДИНАМИЧЕСКИХ ПАРАМЕТРОВ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ ТЯНЬ- ШАНЯ

Аннотация. В статье изложены предварительные результаты изучения динамических параметров очагов землетрясений Тянь-Шаня: соотношений энергетического класса (K_R=lgE, Дж), сейсмического момента (Мо, H*м), угловой частоты спектра поперечных волн (fo, Гц), спектральной плотности (Ωо, мм/сек), средней подвижки по разломам очага (D, м), сброшенного напряжения (Δσ, Па), радиуса Брюна (R, м), сейсмической энергии (Е, Дж), моментной магнитуды (Мw).

Ключевые слова: землетрясение, очаг, динамический параметр, угловая частота, спектральная плотность, средняя подвижка, сейсмический момент, сейсмическая энергия, сброшенное напряжения, моментная магнитуда.

ТЯНЬ-ШАНДЫН ЖЕР ТИТИРӨӨЛӨРҮНҮН ДИНАМИКАЛЫК ПАРАМЕТРЛЕРИНИН БАЙЛАНЫШТАРЫ

Кыскача мазмуну. Макалада Тянь-Шандагы жер титирөөлөрдүн очокторунун динамикалык параметрлеринин: энергетикалык класстын ($K_R=lgE, Дж$), сейсмикалык моменттин (Mo, H*м), туурасынан кеткен толкундардын спектрлеринин бурчтук жыштыктарынын (fo, Гц), спектрдик тыгыздыктардын (Ω o, мм/сек), очоктордогу жаракалардын орточо жылышуусунун (D, м), чыгарылган чыңалуунун ($\Delta \sigma$, Па), Брюн радиусунун (R, м), сейсмическалык энергиянын (E, Дж), моменттик магнитуданын (Mw) байланыштарын изилдөөнүн алдын-ала натыйжалары келтирилген.

Негизги сөздөр: жер титирөө, очок, динамикалык параметр, бурчтук жыштык, жылышуу, чыгарылган чыңалуу, сейсмикалык момент, сейсмикалык энергия, моменттик магнитуда.

CORRELATION OF DYNAMIC PARAMETERS OF EARTHQUAKE FOCI IN THE TIEN SHAN

Abstract. The preliminary results of studying the correlation of dynamic parameters of earthquake foci in the Tien Shan are presented in the paper. They are energy class (K_R, J), seismic moment (Mo, N*m), corner frequency of transverse wave spectra (fo, Hz), spectral densities (Ωo , mm/sec), average fault displacement in focus (D, m), stress drop ($\Delta \sigma$, Pa), the Brune radius (R, m), seismic energy (E, J), moment magnitude (Mw).

Keywords: earthquake, focus, dynamic parameter, corner frequency, displacement, stress drop, seismic moment, seismic energy, moment magnitude.

Изучение соотношения динамических параметров очагов землетрясений по данным сетей сейсмических станций является актуальной проблемой сейсмологии [1-5]. До 1990 года динамические параметры очагов землетрясений Тянь-Шаня определялись по записям аналоговых станций. С установлением цифровых сейсмических станций эти параметры определяются по данным сетей KRNET, KNET [5-8]. Исходными данными наших исследований является каталог динамических параметров Института сейсмологии НАН КР с 2010 года по 2012 год, подготовленный Центром данных ИС НАН КР [9].

В качестве примера показаны результаты изучения соотношений динамических параметров очагов землетрясений Тянь-Шаня, а именно fo -угловой частоты спектра

поперечных волн, D - средней подвижки по разломам очага, Δσ - сброшенного напряжения, Е - сейсмической энергии, Мо - сейсмического момента от Мw - моментной магнитуды. Для определения динамических параметров очагов землетрясений использованы только записи Sволн. Длина отрезка записи для построения спектра выбирается от момента вступления S волны до момента спада амплитуды до 1/3 максимальной амплитуды. Уровень полезного сигнала выбранной записи должен превышать фон микросейсм в 3 раза.

Значения fo - угловой частоты и Ωо - спектральной плотности снимаются с графика спектра S-волны [1-4]. Остальные значения вычисляются по следующим соотношениям:

$$\Omega(\omega) = \frac{\sigma\beta}{\mu} \frac{1}{\omega(\omega^2 + \tau^{-2})^{1/2}}$$

где
 σ - эффективное напряжение,
 μ — жесткость,
 β — скорость S-волны,
 ω - частота, τ – величина порядка размера
 разлома, деленная на скорость S-волны,

среднеквадратичный спектр дальнего поля определяется по формуле:

$$\langle \Omega(\omega) \rangle = \langle \mathcal{R}_{\theta \phi} \rangle \ \frac{\sigma \beta}{\mu} \frac{\mathbf{r}}{\mathbf{R}} \ \mathbf{F}(\varepsilon) \frac{1}{\omega^2 + \alpha^2} \tag{1}$$

где $\langle \mathcal{R}_{\theta \varphi} \rangle$ - среднеквадратичное значение диаграммы направленности излучения, r - радиус эквивалентной круглой поверхности дислокации, R – расстояние, F(ϵ) = {[2 - 2 ϵ][1 - cos (1.21 $\epsilon \omega/\alpha$)] + ϵ^2 }^{1/2}, ϵ - доля сброшенного напряжения, $\alpha = 2.21 \beta/r$.

Сейсмический момент Мо (дин/см) вычисляется соотношением [2]:

$$Mo = \frac{4\sqrt{2\pi\rho V_s^3 \Omega_0}}{R_{\psi} GS_m S_k},$$
(2)

где $\rho=2,7$ г/см³ - плотность пород в области очага, Vs- скорость распространения S- волны (км/сек), Ω о - спектральная плотность спектра Фурье записи поперечной волны, R ψ =0.64 – влияние направленности излучения очага, G=1/r - геометрическое расхождение, где $r = \sqrt{\Delta^2 + h^2}$, r - гипоцентральное расстояние, Δ - эпицентральное расстояние, h- глубина очага, Sm=1- поглощение амплитуды за счёт добротности среды, Sk- влияние эффекта увеличения амплитуды колебания при выходе на дневную поверхность.

В 2012 году на территории Тянь-Шаня зарегистрировано 82 события с K_R ≥ 7.6. Исследованы соотношения динамических параметров этих событий. Зависимость энергетического класса от моментной магнитуды (рисунок 1) выражается формулой:

 $K_{\rm R} = (2.1298 \,{\rm Mw} + 1.0067) \pm (1.1), \tag{3}$

где K_R - энергетический класс (lg E, Дж), Mw - моментная магнитуда землетрясений, ± (1.1)верхний и нижний пределы флуктуации функции K_R (Mw).

Рисунок 1. График соотношения энергетического класса (K_R) от моментной магнитуды (Mw). Точечной линией обозначен тренд, сплошными линиями нижний и верхний пределы флуктуации функции K_R (Mw).

Зависимость угловой частоты от моментной магнитуды (рисунок 2) выражается формулой:

где fo – угловая частота (Гц), Mw - моментная магнитуда землетрясений, ± (-0.2) - верхний и нижний пределы флуктуации функции lg lg fo(Mw).

Рисунок 2. График соотношения угловой частоты (lg lg fo) от моментной магнитуды (Mw). Точечной линией обозначен тренд, сплошными линиями нижний и верхний пределы флуктуации функции lg lg fo(Mw).

Зависимость сейсмического момента от моментной магнитуды (рисунок 3) выражается формулой:

$$lg lg Mo = (0.0425 Mw + 1.0116) \pm (0.015),$$
(5)

где Мо – сейсмический момент (H·м), Мw - моментная магнитуда землетрясений, ± (0.015)нижний и верхний пределы флуктуации функции lglg Mo (Mw).

Рисунок 3. График соотношения сейсмического момента (lglg Mo) от моментной магнитуды (Mw). Точечной линией обозначен тренд, сплошными линиями нижний и верхний пределы флуктуации функции lg lg Mo (Mw).

Зависимость спектральной плотности от моментной магнитуды (рисунок 4) выражается формулой:

где Ωо - спектральная плотность (мм/сек), Mw - моментная магнитуда землетрясений, ±(0.4)- нижний и верхний пределы флуктуации функции lg Ωo(Mw).

Рисунок 4. График соотношения спектральной плотности (lg Ω o) от моментной магнитуды (Mw). Точечной линией обозначен тренд, сплошными линиями нижний и верхний пределы флуктуации функции lg Ω o(Mw).

Зависимость сброшенного напряжения от моментной магнитуды (рисунок 5) выражается формулой:

$$lg \Delta \sigma = (0.7413 Mw + 3.9574) \pm (0.9), \tag{7}$$

где $\Delta \sigma$ – сброшенное напряжение (Pa), Mw - моментная магнитуда землетрясений, ± (0.9)верхний и нижний пределы флуктуации функции lg $\Delta \sigma$ (Mw).

Рисунок 5. График соотношения сброшенного напряжения (lg $\Delta \sigma$) от моментной магнитуды (Mw). Точечной линией обозначен тренд, сплошными линиями нижний и верхний пределы флуктуации функции lg $\Delta \sigma$ (Mw).

Зависимость радиуса Брюна от моментной магнитуды (рисунок 6) выражается формулой:

$$lglg R = (0.0464Mw + 0.252) \pm (0.4), \tag{8}$$

где R- радиус Брюна (м), Mw - моментная магнитуда землетрясений, ±(0.4) - верхний и нижний пределы флуктуации функции R (Mw).

Рисунок 6. График соотношения радиуса Брюна (lglg R) от моментной магнитуды (Mw). Точечной линией обозначен тренд, сплошными линиями нижний и верхний пределы флуктуации функции lg $\Delta \sigma$ (Mw).

Зависимость средней подвижки от моментной магнитуды (рисунок 7) выражается формулой:

$$lg D = (0.0464Mw + 0.252) \pm (0.4), \tag{9}$$

где D - средняя подвижка (м), Mw - моментная магнитуда землетрясений, ±(-0.6) - верхний и нижний пределы флуктуации функции lgD (Mw).

Рисунок 7. График соотношения средней подвижки (lg D) от моментной магнитуды (Mw). Точечной линией обозначен тренд, сплошными линиями нижний и верхний пределы флуктуации функции lgD (Mw).

Зависимость сейсмической энергии от моментной магнитуды (рисунок 8) выражается формулой:

$$E = (0.086 Mw + 0.7091) \pm (0.5), \tag{10}$$

где Е - сейсмическая энергия (Дж), Мw - моментная магнитуда землетрясений, ±(0.5)верхний и нижний пределы флуктуации функции Е (Мw).

Рисунок 8. График соотношения сейсмической энергии (Е) от моментной магнитуды (Мw). Точечной линией обозначен тренд, сплошными линиями нижний и верхний пределы флуктуации функции E(Mw).

Пространственное распределение моментной магнитуды (Мw ≥3.1) землетрясений Тянь-Шаня за 2012 год по данным каталога ИС НАН КР носит мозаичный характер (рисунок 9). Землетрясение с Мw=5.5 проявилось на восточной части Заилийского активного поднятия, а землетрясения с Мw=4.2-4.7 - в Срединном и Западном Тянь-Шане.

Рисунок 9. Пространственное распределение моментной магнитуды (Мw ≥ 3.1) землетрясений Тянь-Шаня за 2012 год. Жёлтыми кружочками обозначены землетрясения с Мw = 3.1–3.6, голубыми - Мw = 3.6–4.2, фиолетовыми - Мw=4.2-4.7, красными - Мw= 5.3–5.9.

На рисунке 10 приведён график изменения моментной магнитуды (Мw) землетрясений Тянь-Шаня во времени. Здесь выделяется иерархия циклов. Периоды циклов, например, третьего порядка составляют около 30–120 суток.

Рисунок 9. График изменения моментной магнитуды (Мw ≥ 3.1) землетрясений Тянь-Шаня во времени за 2012 год. Пунктирными линиями обозначены циклы третьего порядка, точечной линией - циклы второго порядка.

Заключение

- 1. Анализированы динамические параметры очагов ряда землетрясений Тянь-Шаня на основе данных сетей цифровых сейсмических станций ИС НАН КР, НС РАН, Казахстана и др. за 2012 год.
- 2. Изучены соотношения основных динамических параметров очагов землетрясений Тянь-Шаня:
 - энергетического класса K_R =lgE (Дж) и моментной магнитуды Mw, т. е. функция E (Mw) и определены её пределы флуктуации: ± (1.1);
 - угловой частоты lglg fo (Гц) и моментной магнитуды Mw, т. е. функция lglg fo (Mw) и определены её пределы флуктуации: ± (-0.2);
 - сейсмического момента lglg Mo (H·м) и моментной магнитуды Mw, т. е. функция lglg Mo (Mw) и определены её пределы флуктуации: ± (0.015);
 - спектральной плотности lg Ω o (мм/сек) и моментной магнитуды Mw, т. е. функция lg Ω o (Mw) и определены её пределы флуктуации: \pm (-0.4);
 - сброшенного напряжения lg Δσ (Pa) и моментной магнитуды Mw, т. е. функция lg Δσ (Mw) и определены её пределы флуктуации: ± (0.9);
 - радиуса Брюна lglg R (м) и моментной магнитуды Mw, т. е. функция lglg R (Mw) и определены её пределы флуктуации: ± (0.4);
 - средней подвижки lg D (м) и моментной магнитуды Mw, т. е. функция lgD (Mw) и определены её пределы флуктуации: ± (0.4);
 - сейсмической энергии E (Дж) и моментной магнитуды Mw, т. е. функция E (Mw) и определены её пределы флуктуации: ± (0.5).
- 3. Отмечено, что изменение динамических параметров, в частности сейсмического момента, очагов землетрясений Тянь-Шаня во времени имеет циклический характер.

ЛИТЕРАТУРА

- 1. Brune J.N. Tectonic stress and the spectra of seismic shear waves from earthquakes //J. Geophys. Res. -1970. -v.75. -N.26 -P.4997-5009.
- 2. Мамыров Э.М., Омуралиев М., Кальметьева З. А., Жээнбаев М. Инструкция по определению динамических параметров землетрясений на базе цифровых записей КNET. Фонды ИС НАН КР.
- 3. Сейсмологический бюллетень (ежедекадный) за 2000 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2000–2001.
- 4. Сейсмологический бюллетень (ежедекадный) за 2001 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2001–2002.
- 5. Омуралиев М., Омуралиев А. Сейсмические излучение в близких зонах от землетрясений по данным локальной сети сейсмических станций // Известия НАН КР. -2006. -№1. -С.34-43.
- Sycheva N. The source parameters of earthquakes of Bishkek geodynamic proving ground (Northern Tien Shan) // EPJ Web Conf. XII International Conference "Solar-Terrestrial Relations and Physics of Earthquake Precursors". -Volume 254 (02016). -2021. -pp.13. <u>https://doi.org/10.1051/epjconf/202125402016</u>
- 7. Омуралиев М., Омуралиева А., Мамбетсадыкова А. Анализ динамических параметров очагов землетрясений Тянь-Шаня //Вестник Института сейсмологии НАН КР. -2023. № 2(22). -С.47-64.
- 8. Мамбетсадыкова А., Омуралиев М., Омуралиева А. Динамика сейсмических воздействий в пределах г. Баткен, Кыргызстан за 1962–1977 гг. //Вестник Института сейсмологии НАН КР. -2024. -№ 1(23). -С. 39–60.
- 9. Отчёт о научно-производственной деятельности центра обработки данных Института сейсмологии НАН КР за 2012–2013 гг.

Рецензент: к.ф-м.н. Фролова А. Г.