УДК.550.348

Миркин Е.Л., Багманова Н.Х. Институт сейсмологии НАН КР, г. Бишкек, Кыргызстан

ЭМПИРИЧЕСКИЕ МОДЕЛИ ЗАВИСИМОСТЕЙ СЕЙСМИЧЕСКИХ ПАРАМЕТРОВ ЗЕМЛЕТРЯСЕНИЙ, ПРОИЗОШЕДШИХ НА ТЕРРИТОРИИ КЫРГЫЗСТАНА

Аннотация. В работе получены линейные и нелинейные эмпирические модели зависимостей сейсмических параметров $K = \mathrm{f}(M_{LH},h)$ и $K = \mathrm{f}(I,h)$ землетрясений для территории Кыргызстана.

Ключевые слова: энергетический класс землетрясения, магнитуда, макросейсмические данные, интенсивность сотрясений, эмпирические модели, нелинейные модели.

КЫРГЫЗСТАНДЫН ТЕРРИТОРИЯСЫНДА БОЛГОН ЖЕР ТИТИРҮҮЛӨРДҮН СЕЙСМИКАЛЫК ПАРАМЕТРЛЕРИНЕ КӨЗ КАРАНДЫ БОЛГОН ЭМПИРИКАЛЫК МОДЕЛДЕР

Кыскача мазмуну. Кыргызстандагы жер титирөөлөрдүн $K = \mathrm{f}(M_{LH},h)$ жана $K = \mathrm{f}(I,h)$ сейсмикалык параметрлеринин ортосундагы байланыштын сызыктуу жана сызыктуу эмес эмпирикалык моделдери иштелип чыккан.

Негизги сөздөр: жер титирөөнүн энергетикалык классы, магнитудасы, макросейсмикалык маалыматтар, титирөө интенсивдүүлүгү, эмпирикалык моделдер, сызыктуу эмес моделдер.

EMPIRICAL MODELS OF DEPENDENCIES OF SEISMIC PARAMETERS OF EARTHQUAKES THAT OCCURRED IN THE TERRITORY OF KYRGYZSTAN

Abstract. Linear and nonlinear empirical models of the relationships between $K = f(M_{LH}, h)$ and K = f(I, h) seismic parameters of earthquakes in Kyrgyzstan were obtained.

Keywords: earthquake energy class, magnitude, macroseismic data, shaking intensity, empirical models, nonlinear models.

В практике сейсмической обработки цифровых данных, полученных из различных источников, часто требуется преобразовать некоторые сейсмические параметры, имеющие схожий смысл, но вычисленные различными методами, в аналогичные нужные для конкретных расчётов. Как правило, для этих целей задают произвольные эмпирические модели [1, 2], известные с точностью до параметров с целью последующего определения этих параметров по накопленным статистическим данным, собранным в пределах заданной территории. Идентифицированные модели будут учитывать особенности строения земной коры территории, где осуществлялся сбор данных для моделей. Таким образом, полученные эмпирические модели становятся пригодными для практического использования в пределах этой территории.

Для многих практических задач, решаемых в Институте сейсмологии НАН КР, наиболее востребованы эмпирические модели зависимостей следующих сейсмических параметров:

К – энергетический класс землетрясения;

M — магнитуда землетрясения;

I – интенсивность сотрясений;

h – глубина очага землетрясения.

Для построения эмпирических моделей связей сейсмических величин использовалась база данных землетрясений (до 2019 г.) с магнитудой $M_{LH} \ge 4.6\,$ и макросейсмические данные 84 землетрясений [3, 4], произошедших в пределах координат $\varphi \in [39^\circ \ 44^\circ]\,$ восточной долготы, $\lambda \in [69^\circ \ 81^\circ]\,$ северной широты. Так для построения модели зависимости энергетического класса K от магнитуды M_{LH} было отобрано 195 сейсмических событий с измеренными параметрами — (K, M_{LH}, h) , а для модели зависимости энергетического класса K от интенсивности сотрясений I было отобрано 170 сейсмических событий с измеренными параметрами — (K, I, h) [5].

В качестве эмпирических моделей были использованы линейные модели, не учитывающие глубину h залегания очага землетрясения:

$$K = c_{M1}M + c_{M2};$$

$$K = c_{I1}I + c_{I2},$$
(1)

и нелинейные модели, учитывающие глубину h залегания очага землетрясения:

$$K = c_{Mh1}M + c_{Mh2}h + c_{Mh3}h^{2} + c_{Mh4};$$

$$K = c_{Ih1}I + c_{Ih2}h + c_{Ih3}h^{2} + c_{Ih4},$$
(2)

где c_{Mi} , c_{Ii} , $(i=\overline{1,2})$ и c_{Mhi} , c_{Ihi} , $(i=\overline{1,4})$ — неизвестные параметры линейных и нелинейных моделей, подлежащих определению.

Идентификацию параметров линейных и нелинейных моделей (1), (2) будем проводить, используя метод наименьших квадратов. Результаты идентификации линейных и нелинейных моделей представлены на рисунках 1 и 2.

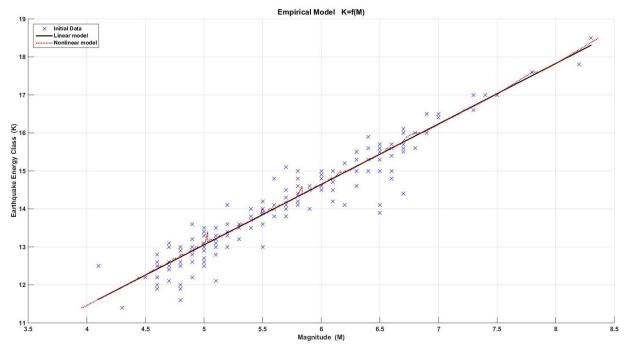


Рисунок 1. Результаты идентификации эмпирических линейных и нелинейных моделей зависимостей $K = \mathrm{f}(M_{IH},h)$ по 195 сейсмическим событиям.

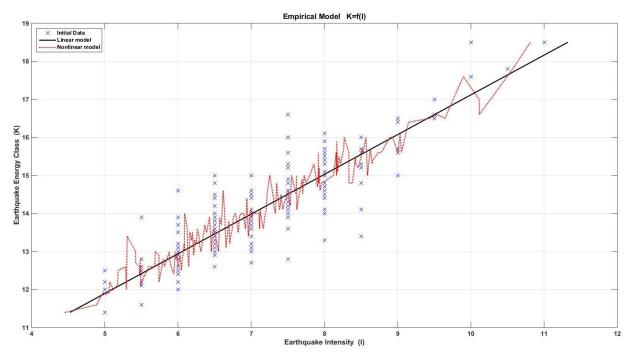


Рисунок 2. Результаты идентификации эмпирических линейных и нелинейных моделей зависимостей $K = \mathrm{f}(I,h)$ по 170 сейсмическим событиям.

Значения параметров и сравнительный анализ качества линейных и нелинейных эмпирических моделей приведён в таблице 1.

Таблица 1- Сравнительный анализ качества линейных и нелинейных моделей.

Результаты идентификации эмпирических линейных и нелинейных моделей зависимостей $K = \mathrm{f}\left(M_{LH},h\right)$ по 195 сейсмическим событиям							Средняя ошибка модели	
Параметры	c_{M1}	c_{M2}	c_{Mh1}	c_{Mh2}	C_{Mh3}	C_{Mh4}	Er_{M}	Er_{Mh}
Линейная модель	1.5912	5.0977					0.1001	
Нелинейная модель			1.5908	0.0092	0.0002	5.1718		0.0992
Результаты идентификации эмпирических линейных и нелинейных моделей зависимостей $K = \mathrm{f}(I,h)$ по 170 сейсмическим событиям							Средняя ошибка модели	
Параметры	c_{I1}	c_{I2}	c_{Ih1}	c_{Ih2}	c_{Ih3}	c_{Ih4}	Er_I	Er_{Ih}
Линейная модель	1.0450	6.6684					0.3077	
Нелинейная модель			0.9837	0.0523	0.0003	6.2987		0.2584

Сравнивая качество линейных и нелинейных эмпирических моделей (таблица 1), видим, что для зависимости $K = \mathrm{f}(M_{LH},h)$ нелинейная модель лучше линейной приблизительно на 1 процент, а для зависимости $K = \mathrm{f}(I,h)$ нелинейная модель лучше линейной приблизительно на 19 процентов. Поэтому в первом случае можно пользоваться более простой линейной моделью, а во втором случае нелинейной. Заметим, что пересчёт величины интенсивности сотрясений I в магнитуду M_{LH} потенциального землетрясения с глубиной очага h может быть проведён путём использования коэффициентов двух полученных эмпирических моделей. Другими словами сначала находим для заданной интенсивности сотрясений I энергетический класс K по второй модели, затем по первой модели определяем магнитуду M_{LH} .

Таким образом в работе получены линейные и нелинейные эмпирические модели следующих зависимостей $K = \mathrm{f}(M_{LH},h)$ и $K = \mathrm{f}(I,h)$ для территории Кыргызстана. Модели позволяют пересчитывать требуемые сейсмические параметры, имеющие схожий смысл, но вычисленные различными методами, в аналогичные нужные для других конкретных расчётов.

ЛИТЕРАТУРА

- 1. Мамыров Э. Управляющие параметры соотношений магнитуда сейсмическая энергия— сейсмический момент коровых землетрясений. Бишкек: Илим. 2014. 97 с.
- 2. Джанузаков К.Дж., Омуралиев М., Омуралиева А.М., Ильясов Б.И., Гребенникова В.В. Сильные землетрясения Тянь-Шаня (в пределах территории Кыргызстана и прилегающих районов стран Центральной Азии). Бишкек: Илим. 2003.- 215 с.
- 3. Гребенникова В.В., Миркин Е.Л. База Данных (БД) «SEISMIC INTENSITY» («СЕЙСМИЧЕСКАЯ ИНТЕНСИВНОСТЬ») Кыргызпатент. Авторское свидетельство № 25 от 17 июля 2015 г.
- 4. Гребенникова В.В., Миркин Е.Л. Метод оперативного расчета интенсивности сейсмических сотрясений в населенных пунктах Кыргызстана при сильных землетрясениях. В сб.: Землетрясения Северной Евразии. 2011. Обнинск, 2017. 495-501 с.
- 5. Абдрахматов К.Е., Берёзина А.В., Уокер Р., Фролова А.Г. и др. Землетрясения Кыргызстана. Бишкек: 2022. 206 с.

Рецензент: к. ф.-м.н. Фролова А.Г.